FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation

摘要

We present a Few-Shot Relation Classification Dataset (dataset), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research.

类型
出版物
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
于鹏飞
于鹏飞
在读计算机博士

我的科研方向为自然语言处理。我的科研经历主要在信息抽取和知识获取上。